
LBL-32793 
ESG-210 
UC-410 
KEK Report 92-12 

A Contemporary Guide to Beam Dynamics 

Etienne Forest· and Kohji Hiratat 

KEK, National Laboratory for High Energy Physics, 
Tsukuba, Ibaraki 305, Japan 

Abstract 

LBL--32793 

DE93 001547 

A methodological discussion is given for single particle beam dynamics in circular ma
chines. The discussions are introductory, but (or, even therefore) we avoid to rely on too 
much simplified concepts. We treat things from a very general and fundamental point of 
view, because this is the easiest and rightest way to teach how to simulate particle motion 
and how to analyze its results. We give some principles of particle tracking free from the
oretical prejudices. We also introduce some transparent methods to deduce the necessary 
information from the tracking: many of the traditional beam-dynamics concepts can be 
abstracted from them as approximate quantities which are valid in certain limiting cases. 

·Permal1ent address, Exploratory Studies Group, Accelerator and Research Division, Lawrence Berke
ley Laboratory, 1 Cyclotron Road, MS 71-259, Berkeley, California 94720, USA. Electronic mail: 
ETIENNE@LBL.Bitnet 

t Electronic mei1: HIRATA@JPNKEKVM.Bitnet 

1 MASIIR 
~ 

OISTRtBUTION OF r,."HS DOCUI\lfENT IS UNLIMITED 



Contents 

1 Preface 

2 Local System: LEGO Block 
2.1 Local Coordinates: the Faces of each Block .. 
2.2 Local Particle Dynamics: Modeling principles 
2.3 State Variables . . . . . . . . . . . . 
2.4 Connecting Local Blocks into a Ring 

3 Global System: One-Turn Map 
3.1 Approximations of the One-tum Map: N-Jets ...... . 
3.2 Global Dynamics of N-jets: the Paradox ......... . 
3.3 So, where are my Global Goodies? Answer: Normal Forms 
3.4 Equilibrium Beam Envelope . . . . . . . . 
3.5 WARNING about Perturbation Theory .. 
3.6 The Issue of Useful Formulas ....... . 

4 Summary 

A Fibre Bundle Structure of LEGO Loop 

B Rectangular Bend 

1 Preface 

2 

5 
5 
6 

. .... 7 
9 

11 
12 
14 
15 
17 
19 
19 

22 

23 

25 

How to A void Reading This Paper If you are so lazy that you do not want to 
read this report from beginning to end, you can repla.ce it by remembering the following 
phrases. 

1. The one-turn map (plus partial transfer map) contains everything. 
2. To construct it, you should not rely on so-called beam-dynamics concepts. Use 

Lorentz equation only. 
3. To use the one-turn map, you can ignore what you did in constructing it. Try to 

use physical and/or well-defined concepts only. 

The Aim of This Paper The authors agree that it is necessary to have a short tutorial 
~")aper on beam dynamics of circular machines from a modern point of view. The purpose 
is to emphasize the modern approach which decouples "sinlulation" from "analysis". In 
our view, this is by far the best way to approach the topic of circular rings and quasi
periodic systems. Unfortunately, this paper is not comprehensive enough as a textbook. 
Instead, we will give a large scale overview of the structure of circular ring dynamics as the 
authors perceived it. The readers should extract from this paper a general understanding 
of what we call the "modern" approach and this should serve him or her as a guide into 
more detailed studies. 
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Global and Local Information This paper is based on a fundamental distinction 
between local and global information. A quantity is called local if it is derivable from the 
individual magnet irrespective of the magnet position in the ring and even irrespective of 
the ring itself. For example, the trajectory of a particle through a magnet is local. IT a 
pal,ticle suddenly appear at the entrance of a quadrupole, we can predict its future position 
and momentum without any knowledge of its origin. We simply integrate "F = rna" 
or Lorentz equation through the magnet. Whether the magnet is installed in a ring or 
sitting on a testing bench alone, like a prototype, it does not matter. This is intuitively 
obvious: if you are an electron going through a circular ring you don't need more than 
"F=ma" to find your way around. 

Global information, on the contrary, is derivable only after the full ring is produced. 
For example, the dynamic aperture has no meaning whatsoever if we cannot iterate the 
one-turn map (i.e. circulate particles in the machine). Also the "so-cal!ed" closed orbit 
is a property of the global object. Things like the Courant-Snyder invariants appears at 
this stage as invariants of the linear part of the one-turn map. 

Notice that all the local properties are controlled by the underlying equation of motion 
"F = rna" irrespective of purpose. The global properties are direct consequences of 
the purpose of the ring: to iterate or circulate a beam for Plany turns. The global 
properties emerged from our feeble attempt to interpret what we see. They are part of 
the interpretation of the one turn map. The phenomenological and the complex concepts 
of periodic systems (tunes, beta functions etc ... ) come in at the end when one interprets 
the results. To clarify further, we give a few examples: 

Local 
simulation of the one-magnet map 

reference coordinate 
deviation from nominal orbit 

magnetic field 
beam envelope 

amount of synchrotron radiation 

Global 
interpretation of the one-turn map 

closed orbit 
betatron amplitude 
betatron function 

equilibrium emittance 
damping partition number 

The Modern Approach The modern approach consists in separating the creation of 
the one-turn map which is a local endeavour from its subse(!uent analysis which is a global 
problem. This separation is done at all levels: computational and conceptual. 

In this paper, we stress that the construction of a tracking code is entirely a local 
problem. Each magnet is defined by a local Hamiltonian whose frame of reference is de
termined by purely local geometrical considerations (shape and symmetry of the magnetic 
field). For example, the particular Frenet-Serret curve used is not necessarily a trajectory 
produced by the magnet. Our only guiding principle in choosing a frame of reference 
is how to push particles through the magnet in a way as simple as possible, given some 
complex magnetic field. What the rest of the ring does is ( and must be) of no concern 
to us in this process. Of course, if the individual magnets have conflicting geometries, 
we must learn how to patch them together. This is the LEGOl block approach and we 

1 LEGO® is a registered trademark of Interlego, A.G., which is not in any way related to the authors. 
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discuss it in section 2. 
By connecting local systems together, we end up with a ring. Here the analysis begins. 

How do we extract our beta functions, tune shifts, emittances and all the rest of these 
"beautiful" concepts? Our technique is mathematically totally disconnected from the 
construction of the tracking code. How can we do this? We forget everything about the 
local properties (Hamiltonian of each element) and concentrate on the global one-turn 
map. In fact, we express standard perturba.tion theory only in terms of the one-turn map. 
Where the one-turn map came from and what various frames of reference were used to 
compute it become totally irrelevant. To illustrate this point, we give a simple example: 
if you have a 2 x 2 matrix representing a ring and I asked you for the tune, you will take 
the trace and that is the end of it. The matrix is an approximate one-turn map and the 
tune is readily extractable from it. In general, we express all of perturbation theory in 
a "Hamiltonia.n-free" context where the ring is defined as a finite set of maps. This is 
outlined in section 3. 

In conclusion, we divide the work into two parts: 

1. the computation of the one-turn map (local) 
2. the analysis of the map (global). 

The separation between the local and global concepts is so complete, as we pointed out, 
that it is possible to teach one independently of the other. 

Contrasting with the Classical Approach Traditionally, one begins with a defini
tion of global coordinates according to Frenet-Serret formulas spanned with respect to a 
somewhat realistic design trajectory. The magnetic field is then expressed in terms of this 
coordinate system. The resulting Hamiltonian is global. 

The traditional approach is an attempt to derive a representation of the equation of 
motions which is suitable simultaneously to tracking and to the computation of global 
quantities such as betatron functions ((3), the tunes, etc. This may be possible in principle 
but is extremely difficult because of the complexity of a circular ring. For pedagogical 
purpose, the general problem is usually swept under the carpet and only idealized rings 
are taught. However, this is not pedagogical: the inexperienced physicist may be gravely 
mislead if (s)he thinks that this "double purpose" parametrization of the Hamiltonian ( 
applicable both for tracking and analysis) is always possible. In fact, in general, one cannot 
find a global and workable Hamiltonian in global and faithful Frenet-Serret variables. The 
trusting student is lead into a dead end by being introduced to concepts which work only 
on a certain class of idealized problerns (without the horizontal-vertical coupling, without 
the cavity, without any nonlinear elements, etc.). 

Our point is that we must imitate the real world in a simulation code. Our simulation 
techniques (symplectic integration etc ...... ) may be dictated by global purposes but the 
code must rema.in local in computing tracking data and approximating the one-turn map. 
That is the only way to keep it simple in a non-ideal situation. Trying to choose the 
Hamiltonian to facilitate the computation of global entities (the phase advance or the 
tune shifts with amplitude for example) is an absolute dead end. 
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We say: compute these quantities in terms of finite time (= s) (typically one-turn) 
maps if you are serious in your attempt to handle the calculation. Divide a ring into finite 
number of pieces and obtain maps to connect them. The Hamiltonian-free formalism of 
perturbation theory will allow you to compute any quantity you desire with this finite 
number of maps. The theory is based on a global definition of the ring as a finite product 
of maps. This number of maps is dictated by the purpose of your calculation. Quite 
often you will need only one map: the one-turn map. The standard Hamiltonian theory, 
viewed from this angle, forces you to consider an continuously infinite number of maps 
because the Hamiltonian represents the map for an infinitesimal time (= s) step. The 
reader should consult the theoretical paper on the topic[6]. 

An attitude of directly evaluating a one-turn map on one hand and theoretically analyz
ing its result on the other hand, is more powerful computationally as well as conceptually 
for the study of circular ring. Of this, we are absolutely certain. Other approaches, if 
necessary, are easily deduced from it. 

So, let us start with the local description: the LEGO blocks. 

2 Local System: LEGO Block 

In this section, we discuss how the local coordinate system attached to each magnets 
permits us propagate physical (local) quantities across the blocks. In section 2.1 we 
define the blocks, in 2.2 we state some fundamental principles in the actual construction 
of the blocks and finally in 2.3 we describe what can be propagated through a block. The 
connection of the blocks is done in 2.4. 

2.1 Local Coordinates: the Faces of each Block 

We have the complete freedom to choose the coordinate system. To make the discussion 
more visual 2 , however, let us compose a ring with only two kinds of blocks, a bend (B) 
and drift (D). From the point of view of our discussion, these two blocks are defined as 
follows (see Fig. 1) : 

1) the drift is a block which has two parallel faces on which a local Cartesian frame is 
attached. The frames are identical (same unit vectors) and the line which link them has 
a length L and is perpendicular to both frames or faces. Notice that any elernent whose 
primary purpose is to focus the trajectory in some fashion but not to bend it is a drift 
for the purpose of this discussion (quadrupole, sextupole, wiggler, solenoid etc .... ). 

2) A bend is a block characterized by two faces with parallel y-axes but x-axes meeting 
at an angle I). The two x-axes and the line joining the two origins form a plane perpen
dicular to the two faces. An arc of circle of length L passes through the origin of both 
faces perpendic~larly. Such a block has for primary purpose to bend an incoming particle 
by approximately (). Notice that nothing is said about the internal details of this magnet 
(whether it is a sector bend, a bend with irregular field or whatever, is immaterial for the 
following discussion). 

2For more ma.thema.tical and general discussion, see Appendix A. 

5 



Figure 1: Fundamental LEGO blocks 
of the ring. Local coordinate sys
telns can be constructed around them. 
Bold lines represent the direction of y 
and dashed x. Note that B does not 
imply the sector bend. 

.. a ... ... 
....~~ .............. ~ 

In summary, the Bend is characterized by a bending radius (p) , (nominal) length (L) 
and two faces with the proper reference frame. The Drift is characterized by the length 
(L) and also two properly "framed" faces. 

The reader will notice that the drift is a special case of the bend: let () go to zero and p 

to infinity while maintaining their product equal to L. In fact the bend is the fundamental 
block which is used in the composition of bigger blocks. 

Note that the LEGO block has little to do with physics in it. It simply states that we 
are interested in the ( deterministic) motion through ea.ch block, which is to be represented 
by a (generally nonlinear) transformation 3 

(1) 

where r is a vector of (generally nonlinear) functions connecting the local coordinate ~in 
defined at the entrance face and the local coordinate Zout at the exit face. See Fig. 2. The 
construction of such a transformation will depend on internal consideration which are not 
needed to understand the LEGO approach. We will see that in general the LEGO block 
for a single magnet might be itself composed of several blocks: this internal structure is 
dictated by magnet geometry and is not necessary at this point of our discussion . 

Figure 2: The map from the entrance 
to the exit of a LEGO block. A block 
indicates two faces where x is defined 
but nothing more. 

.. ~ .. ~ 
~ .. ~ .. 

2.2 Local Particle Dynamics: Modeling principles 

Modeling Problem For most of the cases, given some equations of motion, it is quite 
difficult to find the exact trajectory. Therefore you should introduce some approximations, 
which are accurate enough for your purpose and simple enough to permit calculations 
within a fi.nite time. The particular form of the map one elects to use is called the 

3We do not use the coordinates explicitly except for Appendix B. For the sake of definiteness, however, 
we say z in our mind is (z, Pz, y, P~, t, - E). Here z and y are understood; pz and P~ are the projection 
of the relativistic 3-momentum p to z and y direction: pz = p . ~, etc. Here ez is the unit vector in the 
direction of z. The t is the time and E is the energy. 

6 



model. The element is defined by a block (2 frames of reference) and the nlodel (how 
to propagatE a particle from one face to the other). We thus say 

element = block + model. 

The model defines a map within an element: it should transform the state variables 
from the entrance to the exit as Eq.( 1). For example the block we called the "bend" in 
section 2.1 can, for some purposes, be a simple drift, keeping the transverse momenta 
invariant and changing only the positions. Or it can be itself a complex composition of 
blocks describing the body and the fringe field region. It can also have non-Hamiltonian 
effects such as radiation etc ... The list is endless, but again it is immaterial for stating 
our modeling principles. In general, an element can be defined also by a certain number 
of blocks (if it is a multi-block element) and by a model for each block, the equation of 
motion in each block with its integration method and its associated number of integration 
steps. Now we state two central principles: 

Principle 1 (Locality) The 6-vector Zout is written only in terms of Zin and the local 
parameters intrinsic to that element. It applies in the same way regardless of the particle 
passing only once or many times through the element. 

This principle rejects codes written with some global Frenet-Serret variables. It also 
rejects codes which require the knowledge of the closed orbit or the lattice functions in 
order to perform tracking. Implicitly, it also affirms that any coordinate system can be 
used internally as long as they correctly relate Zin and Zout. 

Principle 2 (Permanence) Once you choose the blocks and their model, you stick to 
them during the entire calculation. The model can be changed only at the beginning or 
end of a calculation if it needs to be simplified or complexified. It must never be changed 
during the calculation. 

For example, some numerical analysis techniques employ a "variable time step" inte
grator. This would violate our "Permanence" principle: we include the number of steps 
of integration in the model definition. In fact, if attempted in a circular ring code using 
symplectic integration, variable time steps can lead to diffusion by destroying the linear 
invariants of the motion. 

Notice that the validity of our model is ultimately determined by global concepts, but 
the description is still local. If the locality and the permanence principle are respected, we 
will show in section 2.4 how the blocks can be freely moved and put together to construct 
a circular ring just like the LEGO blocks used by children. 

2.3 State Variables 

Function Dynamics In the previous subsection, we have assumed that the reader 
is already familiar with the 6-vector z. In Eq.{l), the transformation f describes the 
propagation of z through an element. 
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It is possible to extend the dynamics of 6-vectors to functions of the 6-vector ~. The 
function f 

(2) 

induces a functional map Tf 
Tf 

gin ---+ gout, (3) 

which acts on a function gin to make another function gout as follows: 

(4) 

This extension of the 6-vector dynamics to functions seems entirely formal and therefore 
completely useless. Indeed, by definition, if you know the transformation f, you automat
ically know how to evolve functions using Eq.(4). However, this is the small price one 
must pay in order to use Lie methods in the perturbative techniques used in the analysis 
of the one-turn map. Lie operators act on functions and therefore they are objects which 
"live" in the same space as Tr. 

For electron machine, there is a non-trivial extension of the 6-vector dynamics whose 
purpose is to compute the effect of diffusion and damping on a Gaussian distribution. It 
is the envelope dynamics which we now discuss. 

Local Barycentre-Envelope Dynamics In the absence of photon emission (i.e. if 
the radiation is classical), the propagation of a particle distribution through one block is 
entirely determined by the operator Tr- 1 acting on the distribution function because the 
map is deterministic. The latte'~' includes radiation with n=O or the usual Hamiltonian 
dynamics. 

./. - Tr-l [tfJin] If I = det (ooxtJi.) . 
Y"out - If-II ' (5) 

The determinant If-II insures the preservation of the total probability (or number of 
particles). Its value is one for a symplectic map. 

Our goal is to find the equivalent of Eq.(5) in the presence of diffusion. In the case of 
stochastic diffusion, what is possible to compute correctly is the evolution of a Gaussian 
distribution function (under certain approximations which will become clear later) 4. 

We start with a Gaussian distribution defined at the entrance face of an element: 

(6) 

where n = (1,2 or 3) denotes the degree of freedom. The various parameters in the 
Gaussian have an immediate statistical intepretation. The barycentre ~ is the average of 
z over the distribution: 

~ = (z) = f ztfJ(z)dz. 

4In practice, this is not possible for a general distribution tPin(X). We can write an equation for tPout 
only formaly. 
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The envelope is a matrix 
Eij = ((x - X)i(X - x)j), 

whose components are also called the 2-nd order moments. 
To propagate this distribution through the element, we expand f around the barycentre 

z as follows: 

f(z) = f(z + (z - z)) = f(z) + M(z - z) ... (7) 

The linear map induced by the matrix transformation M(z - z) leaves the distribution 
of Eq.(6) as a Gaussian. Therefore only the barycentre and the envelope are changed. 
Following our discussion on function dynamics, we get 

(8) 

Now, it is possible to add a diffusion effect which can be represented by a matrix 
B(z). This matrix is entirely computable from the local dynamics of an element. The 
transformation which describes the propagation of E through the block is given by 

(9) 

It is important to notice that B as well as M are local properties of the element. For 
example, an insertion of an additional element at some other place affects neither M nor 
B [1]. Therefore one can be very formal and simply say that the state variable contains 
the usual 6-vector with the induced deterministic function dynamics and, in addition, it 
contains the envelope E. In the case where the stochastic matrix B vanishes the envelope 
E is a redundant component of the state variable because it is equivalent to the dynamics 
of quadratic function under linear transformations. 

However for this formal transformation to remain physically valid, the distribution 1/J 
must represent always a Gaussian whose size remains within the domain of validity of 
Eq.(7). Otherwise non-linearities become important and the approximation of Eq.(9) is 
no longer self-consistent. For example, the motion of the barycentre is not given by f{ ~). 5 

Imagine you are standing on a Boor where many LEGO blocks are scattered. You 
have examined already how each LEGO block works. Now it is play time! In the next 
section, you will connect these blocks. 

2.4 Connecting Local Blocks into a Ring 

If we connect a Bend with a Drift, the x-axis and y-axis of the Drift must match those of 
the Bend. Now, let us connect a Bend, a Drift and a Bend. Let us insist that the last bend 
be tilted. vertically. Now we panic! We find a disagreement between x - y coordinates at 
the exit of the Drift and those at the entrance of the vertical Bend. The LEGO blocks 
do not fit into one another. Solution: if you are a kid, you simply ask your parents to 

5Note that iff(z) is not linear, (f(z») :F f(z). See, for example, Ref.~18]. 
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buy a new type of block, a matching block, namely a x-y rotation of angle ¢ (here ¢ = 90 
degrees). See Fig. 3, 

Figure 3: A rotation is necessary in 
passing into the vertical Bend. In the 
lower figure, the connection between 
D and a vertical Bend is shown. The 
solid (dashed) arrows are the y (x) 
axes defined in each block. 

Thus the properly "glued" transformation for these three blocks is 

where 

Bv: z' - fBv(~), 
Entrance of Bv: z' - R( -7r /2)~, 

Drift: z' - fD(~)' 
BH : z' - fBH(~)· 

(10) 

(11 ) 

Here, fBv, for example, represents the transformation for the vertical Bend. The intro
duction of the rotation R is artificial, because the very choice of the coordinate system 
on the faces of the blocks is arbitrary. Of course, by defining the blocks as we did, the 
rotation between blocks is fixed by the relative orientation. It is important to point out 
that nothing unphysical is introduced by this transformation, it is just like changing the 
names of the axes. 

What about the function dynamics and the envelope dynamics? The answer is im
mediate since a rotation in the x-y plane is a 6-vector transformation (leaving time and 
energy constant). Hence, it induces a functional map. For example, we have for our three 
blocks: 

Tfrorol = TfBHTfDTR(-1r/2)Tfb'v = TfBvoR(-1r/2)ofDOfBH (12) 

Then the equivalent of Eq.(12) for the envelope dynamics is 

~out = M3(R( -7r /2)(M2(Ml~wnM: + BdM~ + B'J)R( -7r /2)t)M~ + B3, (13) 

where M}, M2 and M3 are the linear maps of fBH,fD and fBv respectively as defined in 
Eq.(7). 
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Remarks on Multi-Block Elements Some readers may believe that the shape of the 
design trajectory (6-vector=0) through the element should be a reflection of the internal 
composition of the element. For example, one might think that horizontal wigglers could 
be viewed as a succession of horizontal Bends separated by 1r rotations (or something even 
more horrible in the case of the helical wiggler). It is possible but very difficult to follow 
this line of thought. In reality, the geometry of the wiggler is very simply expressed in 
Cartesian coordinates [24], and therefore should be integrated in Cartesian coordinates [5]. 
This makes them Drift blocks as said in section 2.1. Hence they should not be multi-block 
elements. 

On the other hand, bending magnets, depending on their geometry, can be made of 
IIp to 5 blocks internally. We outline this in appendix B. 

Now, you have a complete set of LEGO blocks. We must close the ring. 

Closing the Ring Following the prescription we just outlined, one keeps connecting 
Bends and Drifts one after another into the desired bizarre geometry. Finally, we reach 
the last block. The prescription is obvious. The origin of the exit face of the last block 
must coincide with the origin of the entrance face of the first block. The faces must be 
also parallel. And finally, last but not least, a rotation must be applied to line up the 
frames. We have closure. 

We should emphasize again that the design trajectory (6-vector=O) is not necessarily 
a closed orbit nCi any realistic orbit. In fact, wigglers, certain types of combined function 
bends and realistic fringe fields will prevent the closure of the 0 vector even for the ideal 
machine. The so-called design orbit does not exist. 

3 Global System: One-Turn Map 

Now that the ring is made, we can produce the so-called "one-turn" map. You sit at an 
arbitrary point, called check-point. It is located at the entrance face of some arbitrary 
block (surface of section). There you will study how the state vector evolves turn after 
tum. All the details of the individual block construction and of their juxtaposition become 
irrelevant. The primary interest oi the game has shifted. The central question is now: 
what happen to the state vectors, z, ,p(z), E, etc ... upon iteration. 

All the concepts which we have purposely ignored up to this point become relevant 
because they are consequences of the iteration procedure: 

1. for the case of the deterministic dynamics 
(a) closed orbit at s = 0, (b) normal mode decomposition, (c) tunes, (d) betatron 
functions at s = 0, (e) chromaticity, (f) resonances, (g) tune shifts, (h) dispersion, 
(i) shape of quasi-invariants, (j) short/mid/long term stability, etc. 

2. for the case of the envelope dynamics (a) damping partition number, (b) equilibrium 
envelope (more accurate expression of the equilibrium emittances), (c) all that can 
be deduced from synchrotron radiation integrals. 
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Now, what do we do? If these concepts are not derivable from some representation of 
the one-turn map we are in deep waters! But, of course, it is just the opposite. They are 
derivable from the N-jets representation of the one-turu map which is an appi·oximation 
of the map Tr. 

We now give a quick overview of the "Hamiltonian-free" description of perturbation 
theory. An approximation of the one-turn map is defined in terms of N-jets in 3.1. The 
essence of the perturbation is clarified in 3.2. The approximated one-turn map is related 
to some familiar concepts in 3.3. The beam-envelope is discussed in a parallel fashion in 
3.4. In 3.5 it is argued that the perturbation cannot replace the tracking. Some useful 
formulas for the respcnse of the system to a small perturbation, such as the linear tune 
shift, is explained from our point of view in 3.6. 

3.1 Approximations of the One-turn Map: N-Jets 

The one-turn map gives Zout = f{~in) for Zin and Zout defined at the check-point. This 
map contains almost all the neCE!SSary information of particle motion, as long as you stay 
always at the check-point. If you plot Z every turn sitting at the check-point, the resulting 
graph is what we call the Poincare plot. This plot is obtained by using the one-turn map 
only. 

It is useful to define a (period one) fixed point as 

Zo = f{zo). 

This point (and its translation through the ring) is called a closed orbit. Caution: neither 
the uniqueness nor the stability of such a point is assured. 

As we did with the barycentre, we express the one-turn map around the fixed point 
Zo by introducing e = Z - Zo and changing f(z) as f(z) - Zo: 

(14) 

From now on e is just a dummy 6. 

Dynamics of N-jets Now, we will introduce a finite basis of our function dynamics in 
order to discuss the ordinary perturbation theory. 

An arbitrary function g(N) of e is called N-jets if it is expressed in terms of the 
monomial functions restricted to a given degree N: 

Iml=N 
g(N) = L Gmlm), 

Iml=O 

where 1m) is the monomial function such that, when applied to e, it makes em: 
Im)(e) = em = elmle2m2e3m3e4m4esm5e6me. 

(15 ) 

(16) 

6From now on we employ s~called "active view". In treating a transformation, the active view 
tr.ansforms the object whereas the passive view changes the reference frame. The relation between active 
and passive views is similar to that between Heisenberg and Shrodinger pictures in quantum mechanics. 
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Here, m = (ml,"', m6) is a multi-index of 6 positive integers. The norm is the usual 
"taxi driver norm" (i.e. Iml = l: md. Notice that we did already introduce a quadratic 
restriction in the envelope calculation (Iml ~ 2). Indeed} the transformation of the 
Gaussian distribution in section 2.3 is almost equivalent to the transformation of the 
polynomial Eijeiej where Eij is a vector of 21 independent coefficients. We revisit this in 
section 3.4. 

The N-jets, i.e. the truncated expansion Eq.(15), is another kind of state vector. 
This truncation induces a map TiN) from Tr which acts on the N -jets and make another 
N-jets. 

---+ 

---+ 

g2 
l 
(N) 

g2 

That is, TiN)[g] is Tr[q] less terms of an order higher than N. The dynamics on functions 
with automatic truncation at a degree N, thus induced, is often called the dynamics of 
N -jets. Thus, we have 

Iml=N 
TjN)[g(N)] = g'(N) = L GmTrlm). (17) 

Iml=o 

Here use was made of the linear property 7 of Tr. The function T;N)lm) can be expanded 
in the monomial basis: 

Inl=N 
Trim) = L Alnmln). (18) 

Inl=o 

When substituted into Eq.( 17), it induces 

Inl=N Iml=N 
TiN)[g(N)] = g'(N) = L G~ln), G~ = E MnmGm. (19) 

Inl=o Iml=O 

From Eq. (19), we see that the functional one- turn map TJN) has a matrix represen
tation given by Mnm. This implies that we can study the properties of Tr in a closed 
manner. 

It can be said that the physical content (or the lack of physica.l content) of classical 
perturbation theory is determined entirely by the truncation mechanism of the one-turn 

7The functional operator Tr and rjN) are linear: 

1r[L Qi9i] = L QiTr(gi]. 
i , 

Proof 

Tr[~ Qi9i](Z) = [(~ Qi9i) 0 r] (z) = ~ Qi(9i 0 r)(z) = ~ Qi9;{f(z» = ~ QiTf[gi](Z). 
• • • • • 
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map. 8 The jet dynamics depicted above, is convenient because it gives us the usual 
nonlinear perturbation theory (Deprit or Birkhoff style). Also, the jets are easily com
puted: there exist modern computer techniques such as the so-called "differential algebra 
package" of Berz which permits the automatic computation of the monomial restriction 
directly from the block dynamics of the 6-vector we described above. (If you write a 
"FORTRAN code" to push around the 6-vector, then such a package will permit the 
simultaneous computation of the monomial dynamics.) 

We now ask the fundamental question: what can we compute out of N-jets? This is 
the purpose of the next section. 

3.2 Global Dynamics of N .. jets: the Paradox 

We discuss the nature of the perturbation theory. Perturbation theory is a method to find 
approximate invariants of the motion and to express global properties in terms of these 
invariants. 

Following a notation popularized by Dragt, let us denote by M(N) the one-turn map 
induced on the N -jets by the functional map TJN). 
Question: for the symplectic map, does the following functional equation have a St (ution 

Tr[g] = 9 ? (20) 

Note that the solution g(~), if it exists, is an invariant of the motion. 
Answer: in general NO. It is well known tha.t the motion in an accelerator is non
integrable. Therefore Eq.(20) cannot have a non-trivial 9 solution (exc.ept for some trivial 
cases. A ring without a cavity, for example. Here, the energy is conserved hence it is a 

solution). 
Now what about the same equation restricted to the N-jets: do we have a function 

g(N) = EI:I:~ Gmlm > which is a solution of the equation 

M(N)[g(N)) = g(N) +-+ L: MnmGm = Cn ? (21) 
m 

The answer is: in general YES. The quadratic part of Sf can be diagonalized exactly 
(Courant-Snyder invariants). The nonlinear extension of the Courant-Snyder invariants 
can be obtained from M because it is nearly lower triangular when the vector G is 
ordered by increasing degree [14]. They are some subtleties when the linear tunes are on 
a resonance m . v = k ; k = integer. It is much easier to see all of this in terms of Lie 
transformations than in terms of the matrix M. The reader should be patient until the 
next subsection. 

Clearly, the solution of Eq.(21) would be the Taylor series expansion of the solution 
of Eq.(20) to order N, if it existed. But we just said that Eq.(20) has no solution: what 

8We choose a monomial expansion truncated at a finite degree N. There exist other truncation schemes 
which involve a totally different way of approximating the map. For example, in the work of Warnock 
and Ruth [21] on "fitted" maps, the approximation scheme is valid on tori f~r from the origin. 

9Constant functions are always solutions, but they don't teach us anything 
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in the world is going on? The answer is simple: if the jets of higher and higher order are 
considered, i.e. when N --. 00, the expression of Eq.(21) must diverge. The series is 
asymptotic. 

Similar questions can be asked about the non-symplectic deterministic dynamics of 
the N -jets. For example, is there some function g such that 

(22) 

Here Q is a positive number. In this Lase g is an emmitance-like quantity which shrinks 
with a constant rate towards the origin. The parameter Q can be viewed as a measure of 
the deviation from the symplectic condition. Again, the answer is the same: Eq.(22) has 
no globally ddined solution, but the equation 

(23) 

does. 
So, in conclusion, if the dynamics of the N -jets leads to diverging expression what is 

it good for? The answer is subtle. It is discussed in the next section. 

3.3 So, where are my Global Goodies? Answer: Normal Forms 

Lie Transform To help in the discussion of the Global Goodies, it is useful to introduce 
Lie operators. In the symplectic case, this gives us some sort of pseudo-Hamiltonian for 
the one turn map and, in the non-symplectic case, it guaranties that whatever we do on 
the map, it stays near the symplectic group. 

First, we introduce the usual functional derivative Ok. It is simply defined as follows 
10 

(24) 

Using Eq.(24), we can define the Poisson bracket of two functions 9 and h: 

de! 
[g, h] == Oig Jij ojh (25) 

Here, J is the matrix 

0 1 0 0 0 0 
-1 0 0 0 0 0 

J= 
0 0 0 1 0 0 
0 0 -1 0 0 0 

(26) 

0 0 0 0 0 1 
0 0 0 0 -1' 0 

lOThis is of course a trivial definition. But it is written here to remind the reader that expressions such 
as 8k /(g«()) do not have any meaning. If you are serious about using Lie methods and understanding 
maps such 88 Te, keep the notation clear in complex calculations. Otherwise, go straight to the bar, 
because, even BOber, you will obtain psychedelic results. 
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We are now in a position to define Lie operators and their associated functional map. 
Consider a function h; the Lie operator: h : associated with h (another Dragt notation, 
if you don't like it replace by Lh or whatever you want) is defined by its action on an 
arbitrary function g: 

The Lie map is just: 

de! 
:h:g=[h,g]. 

de! 00 : h :k 
exp(:h:)g=E~g 

k=O . 

(27) 

(28) 

In Eq.(27) and Eq.(28), since we considJr the case where hand 9 are N-jets the question 
of convergence is then trivial 11. 

Notice that the Lie operator and its associated Lie map are objects of the same nature 
as the functional one-turn map. In fact, the restricted map M(N) can be expressed as a 
product of Lie maps (Drc..~t-Finn factorization[23]): 

';\-i(N) = Mlinear exp(: h3 :) exp(: h4 :) ... exp(: hN+l :). (29) 

This factorization is, however, of no direct help in understanding the bizarre equations 
of section 4.2 (Eq.(21) for example}. For this we must introduce a normal (diagonal) 
representation of M. 

Normal Form First, let us define the action functions Jk : 

J = (JI,J2,J3), 

Jk(~) = e~k-l + e~k, k = 1,2,3. 
2 

(30) 

(31) 

Now, consider an arbitrary function of the actions h(J). The reader can verify that 
exp(: h(J) :) induces on the 6-vector (i.e. first order monomials) a J-dependent rotation. 
The angles of this rotation (tune shifts x21r) are given by 

(32) 

Furthermore, the actions Jk are trivial invariants of our map. Of course, as we did for the 
map TjN), it is possible to find a matrix representation for exp(: h(J) :): 

Inl=N Inl=N 
exp(: h(J) :)Im) = E Rnmln ) <=> Gm --. E RmnGn. (33) 

Inl=O 101=0 

Question: Is it possible for the linearly stable one-turn map M(N) to be written as follows: 

Normal Form M(N)=A-1exp(:h(J):)A H M=A.-1RA.? (34) 

11 Not completely trivial because of the linear and quadratic part of : h :. It is left as an exercise for 
the reader. 
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(Note that A is the matrix representation of A as defined in Eq.(18).) Answer: in general 
yes for N-jets, except on a set of measure zero, which we call the resonant maps. The jet 
is resonant if, for the linear tune ", the following is true: m·" = k ; k = integer. 

Remarkably, Eq.(34) contains the solution of Eq.(21) as well as all your other "Global 
Goodies". For example, the quantities A-I Jk are immediate and obvious invariants. 

The map exp{: h{J) :) describes motion on circles of radius 2Jk = f-k where fk is 
the kth "invariant". From this it is clear that the map A describes deviation from the 
circles. It contains all the linear lattice functions (beta and similar things in the presence 
of coupling, etc ... ) as well as the so-called nonlinear distortion functions. 

There is also another important case. Sometimes we consider a ring without an cavity. 
In this case, the normal form is different. One needs to refine the third action as 

J3 = -Energy = {s (35) 

In this case, the map exp{: h{J) :) is a rotation in the planes 1 and 2, and it is drifting in 
plane 3. The action of exp{: h{J) :) on the time of flight {s is given by: 

(36) 

Needless to say, quantities like the linear momentum compaction 01 and its nonlinear 
counterparts are trivially read from Eq.(36). One also gets the amplitude dependent time 
of flight because Eq.(36) depends on J1 and J2• In this case, the dispersion (linear and 
nonlinear) is also a joke to extract from A.12 

3.4 Equilibrium Beam Envelope 

As we pointed out before, the non-symplectic dynamics (due to radiation) can be extended 
in a non-trivial way in the presence of stochastic diffusioJ'l .. 

When the beam is constrained to a linear region around the orbit of interest, we can 
restrict our calculation to linear maps. In addition, in the case of linear motion the 
equilibrium distribution, tPCXH can be calculated. Thanks to the central limit theorem, we 
can restrict tP to a Gaussian 

The one-turn map of the envelope can be written as 

Eout = MEinMt + Bone-turn, 

12The dispersion is obtained 88 follows: 

Di = (.A- 1:::i) 0 X 6 , 

where 21 == 11 ° ° ° ° 0), :::2 == 10 1 ° ° ° 0)"" and X6 is a function such that 

V( X 6(() = (O,0,O,0,0,e6)' 

(37) 

When applied to (, Di(() gives i-th component of the closed trajectory with constant energy e6, from 
which the (linear and nonlinear) dispersion function can be deduced. 
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where M and Bone-turn are the transfer matrix (including radiation damping) and the 
diffusion matrix for a single turn, constructed by a repeated application of Eq.(13). From 
M, we can deduce the tunes and damping coefficients in terms of its eigenvalues. The 
equilibrium envelope (at the check point) Eoo is the envelope which is left invariant by 
Eq.(37). 

The equilibrium envelope Eoo can be expressed as the solution of 

which in vector form can be rewritten as 

where E is a vector made from a matrix E: 
A t 
E = (Ell, EI2 ,' •• ) , 

and if is made from a matrix M in such a way that 13 

MtE = (ME"Mt). 

Thus Eoo is expressed in a concise manner as[1,3] 

A 1 A 

Eoo = '" . Bone-turn. 
1- Mt 

(38) 

(39) 

(40) 

This is how SAD [16] calculates the equilibrium envelope 14. This gives us the beam 
sizes in terms of the physical coordinates at the check-point. For example, ~ is the 
horizontal beam size, which implicitly includes all the effects of the betatron functions, 
ernittances, dispersion and energy spreads in a fashion more accurate than that given by 
the synchrotron integrals. 

In the absence of damping and diffusion, there exist infinitely many invariant distri
butions: we regain the results of the previous sE.ction: 

(41) 

where the ql's are three arbitrary constants and A-I is the operator of Eq.{34} in the case 
of 2-jets. The last expression expresses the invariants in terms of E for the symplectic 
case. When damping is on but diffusion is still off, it is possible to diagonalize Sf by a 
quasi-symplectic map 15 A -1 such that 

(42) 

13The transformation properties of Eij are dual the monomial ~i~j, therefore they transform according 
to Eq.(18} with N = 2, but with the transposed matrix. This is why we use the same notation for the 
matrix (M'). 

141t is to be understood that the closed orbit of:i: iis found and M is evaluated with respect to it. 
151n this case, the diagonalized map is a rotation multiplied by 

exp[-2 x diag(QI1 QIJ Q2,Q2,Q3,Q3)]. 

The symplectic part of A-I is in general different from Eq.(41). 
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Here, M is the functional jet 16 whose matrix is M. 
The real question, with diffusion, is what happens to Eq.(39) if we transforn. it using 

.,4t-l = (.,4t)-1 

.,4l-1 too = (.I4 t - 1 if At)At-l too + At-l Bone-turn 

! 
~new _ M- t ~new + Bnew ? 
k.J oo - newk.Joo one-turn' 

(43) 

If, by some miracle, iJ:::- turn has components only along the 3 functions Jk , then one can 
compute 3 integrals describing the vector iJ:::'-turn and they can be interpreted as the 
fluctuations of the "emittances" 17. In general, it is not true that iJ:::'-turn has projec
tions only along the Jk'S, it has components of order Ok along the other 18 directions[2]. 
Therefore, the synchrotron integrals are only approximate representations. 

We recommend our method of calculation of the beam envelope as the primary numer
ical method to get the beam sizes because it does not rely on any ill-defined quantities. Of 
course, it is not forbidden (it is even recommended) to look at synchrotron integrals as a 
design guide. The validity of the latter is limited to 0. < 1 in the case of 6-d synchrotron 
integrals[28] and to V.,O. < 1 for the case of 4-d integrals[27]. 

3.5 WARNING about Perturbation Theory 

We have outlined the origin of perturb~tion theory. An infinite dimensional functional 
equation is ap~roximately solved by using a finite dimensional approximation of the func
tional map, Tr

N
). The results are, in gener.al, the beginning of an asymptotic series. 

You should never trust the results of such calculation without careful checks. Always 
compare your results with the underlying tracking code. There are all sorts 
of reasons why the perturbation series could be ill-behaved at even small amplitudes. 
For example, we mentioned that the diagonalization of the map M in Eq.{34} is always 
possible except for a set of measure zero corresponding to resonances. However, in reality, 
it suffices for the map M to be in the neighbourhood of a resonance (m· v=k) to greatly 
affect the usefulness of Eq.{34} in the study of the real map 18. 

The moral of the story stays the same: double check the results. This also applies 
to the non-symplectic map and the computation of the beam envelope. (Imagine a case 
where Eoo is too large for Eq.(7) to be applied.) 

3.6 The Issue of Useful Formulas 

In accelerator physics there are a myriad of useful formulas which express the dependence 
of a global quantity in terms of some other global properties and/or magnet strengths. 

1
6Here M is M(2). The superscript will be omitted hereafter whenever the meaning is clear. 

17This approximation is used in Ref.[28]. 
1
8There are of course techniques to swim around resonances, but they are beyond the scope of this 

paper. They include single resonance normal forms [8] and redefinitions of the linear part of the map to 
move away from the resonance [9] as well as the use of totally different basis functions for the approximate 
map [21]. They even include combinations of the standard monomial expansion with a different basis 
[22]. 
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These formulas are derived under some idealized situation and rarely carried beyond the 
first order in perturbation. A typical and useful example is the expression of the change 
of the linear tune due to a quadrupole perturbation: 

(44) 

where ± refers to the horizontal (+) and the vertical (-) planes. 
Many experienced accelerator physicists who have tried, to their credit, to understand 

the concept of "Hamiltonian-free" perturbation theory are often left wondering about its 
usefulness in deriving cute little formulas. 

Ugly DA-Formulas: Pluses and Minuses It should be clear to the reader that 
"ugly" formulas are obtainable according to our discussion: if one invest a little time to 
understand tools such as the "differential algebra" package of Berz, one realizes that it is 
possible to grind out big Taylor series map. One can also put system paraIneters in the 
Taylor series (magnet strengths, length, etc .. ). All the calculations and methods presented 
above follow by extending the 6-vector to a {6+Npar }-vector where Npar is the number 
of system parameters in the map. Any global quantity (beta functions, for example) is 
available from the perturbation, based on the one-turn map, and it can be propagated 
around the ring from point 1 to point 2 using the map from 1 to 2. 

What are the advantages and disadvantages of "DA" formulas? On one hand, the 
main advantage is absolutely clear: it is bug free. IT you implement a new element in 
your code following our local LEGO block technique and you "DA-fled" the code, you 
will get all the global "goodies" as a function of this new element with a extremely low 
probability of mistake if some standard checks are performed at the original programming 
stage. There exist even "DA+Compiler" based software which allow you to produce these 
complex new maps in an almost interactive manner 19. This advantage of the Taylor series 
approach allows you to compute a global quantity for your friend, which normally you do 
not care about, within minutes. On the other hand, the disadvantages are two-fold: 

1. conceptual: you get just a formula with a pile of numerical coefficients. The global 
quantity is not written as a function of other global concepts so it does not teach 
you much. 

2. computational: you may want to have the dependence of the quantity on some vast 
array of parameters. In this case, the number of monomials in a Taylor series of 
the N-jets goes like (N + 6 + Npar )!/[(6 + NpClf)!N!]. For large NPClf and moderate 
N this number can get catastrophically big. The extraction of the Taylor series is 
slowed down, it may even grind to a halt because of memory problems. 

One does not get "cute" formulas out of the Taylor series map. This is to be contrasted 
with the formula of Eq.(44): simple and works even with a trillion quadrupole insertions. 
In such cases an analytic formula may be more appropriate if one intends to use it over 
and over again. 

19COSY-INFINITY,COSY-EXTERMINATOR/TRACY2,TLIE, etc ... 
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Cute formulas So we are back to the original question asked to us by many colleagues: 
yes, if I learn your techniques, I will grind out Taylor series and perforul the extraction of 
global objects (beta, dispersion,etc ... ) more reliably than anybody else, but what about 
purely analytical formulas? 

Here, we emphatically answer this worry by re-iterating what was said in the introduc
tion: our technique is more powerful computationally as well as conceptually. Therefore 
the computation of formulas in terms of unperturbed global concepts is easier and cleaner 
with a map based theory. We will only say that a calculation of order "n" 'in some small
ness parameter f, will require the examination of a ring made out of "n" maps with "n" 
perturbative insertions. The maps are transformed into unperturbed normal variables by 
AO. The "n" maps become rotations (phase advances). The Lie operator : fVi(~) : of 
the ith insertion becomes : f(A?Vi)(~) :. The calculation then proceeds order by order in 
f. The presence of AO in the perturbation insures that everything is expressed in terms 
of the unperturbed global concepts 20. Notice that AO which is an input to the "cute" 
formula.s, is computed using the N-jets formalism and your favorite "DA-fied" tracking 
code. For a general theoretical framework, the reader must consult Ref. [6], and Ref. [7] 
for a complicated 2nd order example. 

Finally, we make a comment on the radiation integrals. They expresses the equilibrium 
beam sizes in terms of integrations of betatron functions, dispersion and so on. On the 
other hand, the beam size has a firm physical meaning while the dispersion is a limiting 
concept. Imagine that we insert a thin quadrupole magnet at the check-point and we 
want to calculate the change of the beam sizes. If the insertion is centered around the 
closed orbit, for example, all we should do is just replace Eq.(38) by 

(45) 

where K represents the matrix of the inserted magnet. We can easily evaluate the effect 
on the beam sizes accurately by use of Eq.(40) with M replaced by ]( M. On the other 
hand, if one uses the radiation integrals, one should evaluate the effect on the betatron 
functions, dispersions etc all throughout the ring, ending up with approximate results. 
This is a detour and a quite indirect way to do this job. As we said before, the radiation 
integrals are useful and concise formulas which we can use for rough estimates. This is, 
however, not the definition of the beam sizes. 

2
0 Note that £(Af\ti)(~) is simply l\ti«(') where ~' is obtained by a coordinate transformation associated 

with AO. For example, in the presence of mid-plane symmetry, the derivation of Eq.( 44) requires for ~': 

~l = VTJ;el 

~~ 
1 Qz 

= \Ii: ~2 - \Ii: ~1 

~~ = J1i;e3 
e~ 

1 Q 
= \f1J; e4-Te3' 

This transformation is just the usual Courant-Snyder transformation. 

21 



4 Summary 

We have looked over what we call the "modern approach", which can be summarized as 
follows: 

1. The one-turn map (plus partial transfer maps) is the fundamental object, which 
should be regarded as the nature itself, even though something is different from 
our real world. 

2. To construct the one-turn map, you should not rely on the global, theoretical, and/or 
prejudiced concepts ( Locality Principle). All approximations used in constructing 
it (i.e. models) should be kept fixed (Permanence Principle) within a single job (like 
the laws of nature). 

3. In utilizing the one-t.urn map, you can introduce further approximations, provided 
they are defined clearly in terms of the one-turn map. Do not break the permanence 
principle at this point by replacing the laws. Do not go dangerously away from the 
limit of the approximations. 

Let us clarify the above statements. We have already discussed the fundamental 
distinction between local and global concepts. We should also classify the global concepts 
into physical, limiting and fuzzy concepts: 

1. physical concepts: one-turn map, transfer map, and quantities derivable from them 
directly. For example, 

(a) closed orbit, 

(b) tunes and equilibrium beam sizes (x2 )oo, when the one-turn map is linear, 

(c) dispersion for coasting proton beam, etc. 

They are both measurable and touchable. 
2. limiting concepts: those which are derived from the one-turn map with approxima

tion. Many of them would be physical concepts of a different system with different 
models (Le. different physics laws). For example, 

(a) dispersions in the presence of a cavity. It becomes physical concept in the limit 
of a coasting proton beam. 

(b) "equilibrium emittances". In electron rings, such objects do not exist as in
variants. The limiting world is the asymptopia 0' ----. O. 

(c) Courant-Snyder "invariants" becomes physical in the limits of linear mapping 
and no-radiation. 

3. fuzzy concepts: all ill-defined concepts like most political slogans. Logically there 
is no need to discuss these because they are products of misunderstanding. An ex
ample: sometimes people seem to talk on the phase advances between two different 
point, without defining them explicitly. In fact, several different ways of factorizing 
the transfer matrix are known. The phase advance and f3 differ for different factor
ization schemes. Thus without additional clear definitions, they are fuzzy concepts. 
This misunderstanding may come from applying 2-d concepts to 4-d or 6-d cases. 
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By definition, all the local concepts are "physical". 
The dangers of fuzzy concepts are clear. It is a crisis of physics. 
The danger of limiting concepts exists when equating two of them. The equation may 

be exact only in the limiting case. For example, the maximum x-excursion of a particle 
and the Courant-Snyder invariant are related through J71. In the limiting case of linear 
motion and no-radiation, both are clear physical concepts. The invariant is essentially 
the area of the ellipse described by the particle. In the presence of radiation, however, 
bvth become unphysical: the amplitude should be regarded as a stochastic variable and 
only the beam size (x 2

) is a physical concept. Finally, in the presence of nonlinearities, in 
particular in the chaotic regions, the concept of the beam size is itself falling apart, then 
in that limit, only the one-turn map remains physical. 

So, be careful and always check the validity of using the limiting concepts by checking 
with the one-turn map (~ tracking) and with your brain! 

Remember that what you are really interested in should be physical concepts. 

This will help you in using limiting concepts correctly when the usual approximat.ions 
break down. 
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A Fibre Bundle Structure of LEGO Loop 

Our way of making one-turn maps can be clearly explained in terms of the terminology 
of fibre bundles [17]. 

A fibre bundle B is defined as a combination B = (S, Y, G): 

1. S is a manifold (base space). 
2. Y is a topological space. Each point s E S is associated with a topological space y. 

(fibre). All Y. are equivalent to Y in the topological sense. 
3. A group G acts on Y, that is, G: Y -+ Y .. 

In the accelerator dynamics context, the base space is the loop of the ring, so that 
S = 8 1 (one-sphere). The fibre Y is the state vectors, such as 

1. the coordinate system (ez , ell). G is rotation R( ¢». 
2. the 6-vector z. G is the symplectic group and represented by f. 
3. function g. G is the functional map representation of the symplectic group: i.e. Tr. 
4. N-jets g(N) = Elml$N Gmlm). G is a restriction TJN) of Tr. 
5. distribution funct.ion 1/J( z ). 
6. barycentre and envelope, (z, E). (G is the almost symplectic transformation -)n 

the barycentre and an almost symplectic affine transformation on the envelope: 
MEMt+B). 
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For illustration, we use the 6-vector :e as an example. 
The base space S has a set of neibourhoods Ui. In accelerator, Ui is an open interval 

(S1,S2)' Locally B is a direct product 

B ~ Y X Ui, (locally). (46) 

A map 7r : B -+ S is called the projection. The fibre at s, Y .. is defined by Y .. == 1r-1(S). 
A map u : Y X Ui -+ Y determines a particular value of the coordi.nate of b E (~, s). 
Two different choices of coordinates :e = u( b) and z = u' ( b) are related by G. The point 
b is a physical quantity but its coordinates are arbitrary. Let us call this 'gauge' degree 
of freedom. By choosing one gauge Ui in each Y x Ui, B is endowed with a coordinate 
system. 

If s E V n V', where V and U' are neighbourhoods of S, a point bEY x (Ui n Vj ) are 
still given two coordinates, (Zi' s) and (Zj, s). They are related to each other by gij E G: 

Here gij does not depend on b. This gij corresponds to our third (matching) block defined 
in 2.4. 

Thus B can be imagined as a series of sheet of papers aligned to each other according 
to some prescribed rule. (See Fig. 4). In some cases, by choosing a gauge properly, all 

Figure 4: Fibre bundle with a prescribed trans
formation rule gij' The same point in B can 
have different coordinates in different neighbour
hoods. They are related by a gauge transforma
tion gij E G. The curve shows the closed orbit (in 
case Y is a 6-vector), or the equilibrium beam size 
( in case Y is an envelope). A continuous curve 
(continuous in B) can be written as Y = /(s) in 
the fibre bundle sense. When expressed by the 
local coordinates, it has discontinuity at the bor
ders of neighbourhoods. 

gij can be made 1, the identity of G. In this case, the bundle is said trivial. In general, 
however, bundle is not trivial. 

Thus, we can define a continuous curve in B, which in general appears discontinuous 
when seen in terms of the coordinates as numbers. We can express the curve as y = /(s) 
with the fibre bundle convention: that is, Y = Yj in Vj and it jumps to gijYj when going 
from Ui to Uj. Similarly, the particle equation of motion can be written as 

dz 
ds = [a:, H], in Fiber Bundle sense. 
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In each Vi, z and H (z) are expressed arbitrarily within the gauge freedom. We have 
stressed in the main text that we should choose the most convenient gauge for constructing 
the map. 

A typical case of nontrivial fibre bundle occurs when some vertical bends exist in 
a certa.in way. See Fig. 5. Here you cannot close your ring without using a gauge 

Figure 5: Nontrivial fibre bundle. The point a 
is the check-point. You go through the LEGO 
ring. In this case, you refuse to use the matching 
block. Thus, you should use some rotated coor
dinate frame in some blocks. This corresponds to 
choosing a frame of reference by a parallel trans
port. In the end, however, you find that you are 
obliged to use at least one matching block in or
der to close the ring. 

transformation at least once. The necessary amount of rotation ¢ in this case is intrinsic 
to the loop of the ring. Thus, we have proved that in general, it is impossible to define a 
globally continuous coordinate frame without torsion. 21 

B Rectangular Bend 

Here, we will illustrate an art of building a model. In particular, we will show that an 
element is not always composed of the bl,ocks one would naively guess. Our discussion 
is based on two seemingly similar elements: the shifted quadrupole bend and the slice 
"donut" bend. They both have quadrupole components and can be called "combined 
function bending magnets". 

The simplest one to discuss is the shifted quadrupole. It is also the strangest. Such 
a magnet is obtained by simply sliding a quadrupole. The resulting bend is a combined 
function bend with a perfectly rectangular geometry. Notice that the orbit through the 
bend cannot be an arc of circle unless the gradient is zero. How can we take advantage 
of the simplicity of the Cartesian geometry. Look at Fig. 6 and follow our words. As 
a LEGO block, this element is a bend with the entrance face labeled "1" and the exit 
face labeled "4". As such, we give a map from "I" to "4". It can be moved and rotated 
anywhere in the ring in accordance with the LEGO block formalism. Now, what about 
the inside? To take advantage of the Cartesian symmetry, we do as follows: 

1. Bring z from 1 to 2, using a polar coordinate ("rotation" around the y-axis). The 
Hamiltonian for this is that of the drift (free) space but expressed in polar coordi
nates. Notice that this "rotation" is a bend block of zero thickness. 

21To be accurate, it should be said that you can choose always a planner circle for the coordinate frame 
no matter how the equation of motion becomes complicated. This is possible, but extremely difficult. 
There is no need to do such a laborious and fruitless job. 
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Figure 6: Geometry of a rectangu
lar parallel face combined function 
bend (=shifted quadrupole). Since 
the magnetic field in the body (from 3 
to 4) has a translational symmetry in 
the direction of the dotted line, the in
ternal coordinate frame should be the 
rectangular one, even if the Hamil
tonian has magnetic fields. On the 
other hand, from 1 to 2, the coordi
nate frame should be the polar one, 
whereas the Hamiltonian is that of a 
drift space. 

2 3 

2. At the face 2, the coordinates are connected continuously. (We do not need the 
matching block). 

3. Then we can put some fringe effects if we want in frame 2. That would be a drift 
block (ignore if it confuses you). 

4. Now, the most important piece, we propagate through the magnet from face 2 to 3 
in Cartesian coordinates using the Hamiltonian: 

(47) 

This propagation is a Drift according to our nomenclature! 
5. Then we tag another fringe field at 3 and we "rotate" to 4. 

So, the entire element is a "rotation" , a fringe, a bend in Cartesian, another fringe and a 
final "rotation". In the block language, you have a bend, 3 drifts and a bend. From the 
point of view of the trajectory, it is the central drift that does all the bending! 

Before going on with the next example, a word is needed on the y-axis "rotation". This 
rotation mixes the direction of propagation (z-axis) and the transverse x-axis. Therefore it 
involves the Hamiltonian of the system (here a drift space). In the next example, the same 
rotation will involve the bend Hamiltonian. If this confuses you, think of translating a 
quadrupole along the z-axis. This must involve two drifts along this axis. If the quadrupole 
is immersed in a solenoid field, then it would involved propagation forward and backward 
in the solenoid mediunl. See reference [11] for more details. 

Now, what about the sliced "donut"? L.ook at Fig. 7. Think of it as a donut with 
current winding around it with the pipe and the windings cut a funny angle. It is clear 
that in the centre of this object there is an almost perfect invariance of the Hanultonian 
if we move along an arc of circle. (Rotational invariance). Near the faces it might be 
easier to use a Cartesian frame perpendicular to the fac~. So the magnet is gotten by 
the following blocks: 
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Figure 7: Geometry of a cylin
drical parallel face bend. Since 
the magnetic field has a rota
tional symmetry, it is natural to 
express the Hamiltonian of the 
body, 3 to 4, in polar coordi
nates. 

1. A "rotation" in free space from 1 to 2, 
2. A fringe effect at 2, 
3. "Rotation" in the bend medium back to 3.(This time the Hamiltonian is that with 

the magnet field, even if no field exist for x > 0.) 
4. Integration of the bend all the way from 3 to 4 using cylindrical coordinates and 

the Hamiltonian 

H=-(1+~h/x3-xJ-x~+ qBOXl + q:OX~ + J
2
( (x~-x~)+I(O(_I __ ). 

p ~ ~p P 
(48) 

5. Then "rotate" in the bend medium back to 5 where you put a fringe effect. 
6. Finally, "rotate" in free space all the way to 6. 

The total block is a bend, a drift, 3 bends, a drJt and a final bend. In Eq.( 48), the term 
K O( 1/ p) is generated by Maxwell's equations in curvilinear coordinates. The quantity p 
is the radius around which the coordinates are expressed in the cylindrical frame. 

With these two examples we have illustrated that even though each element is a bend 
from the LEGO point of view and must be treated identically when moved around the 
lattice, in practice, Maxwell's equations will tell you what it should be like inside the 
element. This is extremely important in the proper treatment of small machines [11]. 
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